Why We Can No Longer Ignore The New Electricity Ecosystem

23/05/2017 11:08

Electricity is an inherent property of our Physical Universe. It seldom shows up naturally in our surrounding physical phenomena, which follow the law of neutral equilibrium, and it was totally hidden until two centuries ago, when Volta, Coulomb and other geniuses started one of the most creative adventures of human intellect.

Electricity became an instrument for a variety of applications so wide, and with such a great impact in our wellbeing, our economic activity and our leisure, that current human life cannot be understood without it.

We critically depend on it. Everyone is aware of the horrible consequences of a black-out. It is therefore necessary for the political powers to establish regulatory frameworks, adopt technical prescriptions and approve planning to face the future development of this industry. And we cannot forget that it is a rather peculiar industry supporting a rather peculiar market, because the electricity energy unit, the kilowatt-hour, has the shortest life of all commercial goods: From birth to grave, around one millisecond. If electricity generation is unable to match electricity demand at that time-scale, the full electricity system can collapse. Imagine in that case the frightening hypothesis of a city or a megacity (hospitals, streets, households) without electricity power for hours.

Electricity technology has evolved along last two centuries with incredible strength, after an early scientific stage plenty of glorious names as Ampère, Ohm and Faraday, followed by a fundamental technical phase with additional egregious names, from Siemens to Edison to Tesla. A complete electricity technology portfolio was already developed by the turn of the century (from 19th to 20th). The electricity system and supply open the door to the modernisation of our societies.

Electricity meant at the beginning "light and force", but Maxwell's marvellous work with pen and paper (the famous Maxwell Equations that so many headaches have produced in students of Engineering and Physics) pointed out that there was a road where electromagnetic waves would appear. At that time, nothing was known about the fact that our Universe is full of those waves, but soon after Maxwell's impressive mathematical discovery, Herz was able to generate them in his laboratory. That was the starting point of another incredible domain of physical phenomena, which is now in our hands in cable-less communications, radio and television broadcasting and this marvellous gadgetry reaching satellite communication. Names as Marconi and, again, Nikola Tesla, were in Herz's trail, to convert it in a marvellous highway paved into a new future.

Yet another new field stemmed from electrical roots: information processing. Electrons and photons, which are two of the essential components of electromagnetism, could be used not only for information transmission, but to treat it and use it to support extremely complex calculations and, not least, medical imaging.

We must recognize that Electricity has been one of the most productive fields of knowledge, and we could declare that we are fully satisfied with it, and it is enough with keeping the house as it is.

No way, that is not the future. Firstly, never ever the human brain has accepted a limit to think. Second, Electricity is the subject of a whole new portfolio of technologies that have been developed in last 20 years, although they are rooted in Volta's pile and Faraday's induction principle and the rest of physical marvels of this part of Science.

If these roots are true, why such a late development of these emerging technologies? Volta's pile is based on Electrochemistry, which is not as common as Combustion Chemistry in the world around us. Wood burns perfectly in any fireplace and generates heat, and heat was the key agent in the

First Industrial Revolution. Invention of thermal machines was a fruitful activity, and Electrochemistry could not find materials and devices to compete with the full macro-system of the combustion-based electricity industry, on the one hand, and combustion-based mobility, on the other hand.

Batteries (such as Volta's Pile) and fuel cells had a very slow development until recently. On the contrary, the petroleum distillery set up by Professor Silliman produced the right fuels for internal combustion engines, and a second Industrial Revolution began, where automobiles were a main branch, and electricity was another fundamental branch. For more than one Century, those branches had little in common, but they were actual boosters for economy along the 20th Century.

What is coming now?: the merging of those branches to create a stronger trunk: Electric Vehicles, which do not use combustion, but Electrochemistry.

The increasing interest in this field of Science was spurred by the need to find solutions for two Big Problems caused by combustion: Local Contamination and Global Warming. Electric cars can reduce both problems significantly. First, they do not have any direct contaminant emissions (they do not even emit noise). Second, in the well to wheel full cycle, CO2 emissions are much lower than those produced by internal combustion engines. If electricity is generated in nuclear power plants or, even better, in renewable energy facilities, electricity consumed in charging the car battery to run 100 km represents a CO2 cycle emission that is around one tenth of the emission of an internal combustion car to run the same distance.

Local contamination is still a worse problem in many towns, because of traffic jams and weather patterns. Note that a full electric car does not release any pollutant at all. So, it can run along deep and long tunnels, which are not suited for internal combustion cars (because of contamination accumulation and the risk of fires inside the tunnel). A web of tunnels (reserved for electric cars) could be the answer to the mobility problem in megacities, besides solving the contamination impact and multiple negative externalities.

Electric cars are a perfect way to merge the Electricity Industry and general ground transportation. It enables us to use the main renewable energy sources (wind, solar) for powering automobiles and trucks. This fact implies the need for bigger electric system, where battery recharge will be a main issue. A large town with one million electric cars will likely need two million recharge poles. Some of them will be of moderate power, but those intended for fast charging will need a unitary power ten times as large as the standard power level for feeding a house.

Do not panic on that: advancements on Electrochemistry, Power Electronics and Electricity generation from renewable sources have not finished yet. The same can be said about mobile phone communications and Internet protocols to govern the full system as well as your specific electric realm within the big grid.

Besides, there are other impressive technological advancements in the fields of waste to energy, heating and cooling networks, big data and energy platforms, and energy efficiency and greener solutions.
Such a relationship between Electricity and individuals and corporations and any type of consumers will create something similar to a new ecosystem. Those ready for a rapid adaptation will have a tremendous advantage in this race, headed to the Future. Years ago, Information Society was coined as a concept to name a set of impressive instruments for dealing with data, papers, books, news, maps, statistics.

Now we need to find a name to identify the new electrical framework for our ordinary life. Electricity will become ubiquitous and much closer to us. We will have Distributed Generation and Storage Facilities (even at home). Electricity will always need a matching between demand and generation, but this obligation will be much more flexible in systems with an elastic capacity for sending a surplus of electricity to available storage facilities, or to take from them what is needed to satisfy the demand.

A new ecosystem will emerge in which the electricity system plays a central role in the whole energy and climate change transition. A new paradigm powered by the combination of electricity and digitalisation, from mobility to home energy solutions, through Internet of things channels and applications. New actors in the form of a myriad of sensors, solar cells, batteries, cars, information access points and industrial equipment which will communicate instantly and automatically; generating data for other actors to adapt their behaviour and provide better service to each other, predict the necessary power to satisfy demand and deliver resources to the bottlenecks in the supply chain. An ecosystem in which Big Data sets the language, and the electricity network the power source, for this growing set of inanimate devices meeting the demand of products and services the people ask for in every given instant, as the top level of a food chain.

This new electricity system also requires a new and comprehensive regulatory framework consistent with the potential of these technical realities, which will make our energy model more flexible, user friendly and efficient and closer to the citizens, and boost their capacity to take their own options in the new energy market.