Nasa have maps the clouds on a distant, mysterious planet outside our solar system.

Using data from the Kepler and Spitzer space telescopes, the agency managed to map the Jupiter-like world of Kepler-7b located about 1,000 and 1,400 light-years away from our sun.

Three years of observations were needed to map the 'very low resolution' image of the clouds, below:

nasa


The space telescope Kepler was used to first make a rough map of the planet, which showed a bright spot on its western hemisphere. But without further data it was unknown whether this spot was caused by heat or reflected light. Scientists then used the Spitzer telescope to measure the temperature of the planet (a relatively cool 1,500-1,800 degrees Fahrenheit), and determine that the spot was more more likely to be light bouncing off clouds than a heat spot.

"By observing this planet with Spitzer and Kepler for more than three years, we were able to produce a very low-resolution 'map' of this giant, gaseous planet," said Brice-Olivier Demory of MIT, who co-authored the paper.

"We wouldn't expect to see oceans or continents on this type of world, but we detected a clear, reflective signature that we interpreted as clouds."

Kepler-7b is a pretty strange world by the standards of our solar system. It orbits its star in a tight orbit (5.6 million miles, or closer than Mercury). And although it is much larger than Jupiter - about half as big again as that world, or 16 times larger than Earth - it is much less dense. In fact, if you placed the planet in a giant swimming pool it would actually float.

More than 150 confirmed exo-planets have been discovered so far by Kepler, with 900 known about in all. Recently a mechanical issue with its reaction wheels mean it is unable to collect new data for the search, but astronomers still have four years of findings to scour through for more insights.

Nasa has more details about how the picture was made, and how it continues to search for exo-planets.

Loading Slideshow...
  • NASA's Kepler Mission Discovers Planet

    In this handout illustration made available on December 5, 2011 by NASA, the Kepler-22b, a planet known to comfortably circle in the habitable zone of a sun-like star is digitally illustrated. For the first time NASA's Kepler mission has confirmed a planet to orbit in a star's habitable zone; the region around a star, where liquid water, a requirement for life on Earth, could persist. The planet is 2.4 times the size of Earth, making it the smallest yet found to orbit in the middle of the habit. Clouds could exist in this earth's atmosphere, as the artist's interpretive illustration depicts. (Photo Illustration by Ames/JPL-Caltech/NASA via Getty Images)

  • NASA's Kepler Mission Discovers Planet

    In this handout illustration made available on December 5, 2011 by NASA, a diagram compares our own solar system to Kepler-22, a star system containing the first 'habitable zone' planet discovered by NASA's Kepler mission. The habitable zone is the sweet spot around a star where temperatures are right for water to exist in its liquid form. Liquid water is essential for life on Earth. The diagram displays an artist's rendering of the planet comfortably orbiting within the habitable zone, similar to where Earth circles the sun. Kepler-22b has a yearly orbit of 289 days. The planet is the smallest known to orbit in the middle of the habitable zone of a sun-like star and is about 2.4 times the size of Earth. (Photo Illustration by Ames/JPL-Caltech/NASA via Getty Images)

  • Extrasolar Planet HD 209458 b, Osiris

    Artist's conception released by NASA of extrasolar planet HD 209458 b, also known as Osiris, orbiting its star in the constellation Pegasus, some 150 light years from Earth's solar system. Scientists have used an infrared spectrum -- the first ever obtained for an extrasolar planet -- to analyze Osiris' atmosphere, which is said to contain dust but no water. The planet's surface temperature is more than 700 Celsius (1330 Fahrenheit).'

  • Planet & Its Parent Star

    Picture released 04 October 2006 by the European Space Agency shows an artist's impression of a Jupiter-sized planet passing in front of its parent star. Such events are called transits. When the planet transits the star, the star's apparent brightness drops by a few percent for a short period. Through this technique, astronomers can use the Hubble Space Telescope to search for planets across the galaxy by measuring periodic changes in a star's luminosity. The first class of exoplanets found by this technique are the so-called 'hot Jupiters,' which are so close to their stars they complete an orbit within days, or even hours. A seam of stars at the centre of the Milky Way has shown astronomers that an entirely new class of planets closely orbiting distant suns is waiting to be explored, according to a paper published 04 October 2006. An international team of astronomers, using a camera aboard NASA's Hubble telescope, delved into a zone of the Milky Way known as the 'galactic bulge', thus called because it is rich in stars and in the gas and dust which go to make up stars and planets. The finding opens up a new area of investigation for space scientists probing extrasolar planets - planets that orbit stars other than our own. AFP PHOTO NASA/ESA/K. SAHU (STScI) AND THE SWEEPS SCIENCE TEAM

  • Hot Jupiter

    Picture released 04 October 2006 by the European Space Agency shows an artist's impression of a unique type of exoplanet discovered with the Hubble Space Telescope. This image presents a purely speculative view of what such a 'hot Jupiter' (word dedicated to planets so close to their stars with such short orbital periods) might look like. A seam of stars at the centre of the Milky Way has shown astronomers that an entirely new class of planets closely orbiting distant suns is waiting to be explored, according to a paper published 04 October 2006. An international team of astronomers, using a camera aboard NASA's Hubble telescope, delved into a zone of the Milky Way known as the 'galactic bulge', thus called because it is rich in stars and in the gas and dust which go to make up stars and planets. The finding opens up a new area of investigation for space scientists probing extrasolar planets - planets that orbit stars other than our own. AFP PHOTO NASA/ESA/K. SAHU (STScI) AND THE SWEEPS SCIENCE TEAM

  • The Goldilocks Planet: Glises 581 G

    Scientist have found a new potentially habitable planet.

  • Imagining Extrasolar Planets

    From the Spitzer Science Center. While astronomers have identified over 500 planets around other stars, they're all too small and distant to fill even a single pixel in our most powerful telescopes. That's why science must rely on art to help us imagine these strange new worlds. From Spitzer Space Telescope. Even without pictures of these exoplanets, astronomers have learned many things that can be illustrated in artwork. For instance, measurements of the temperatures of many "Hot Jupiters," massive worlds orbiting very close to their stars, hint that their atmospheres may be as dark as soot, glowing only from their own heat. While "Hot Jupiters" would be relatively dark in visible light, compared to their stars, their brightness is proportionally much greater in the infrared. Illustrating this dramatic contrast change helps explain why the infrared eye of NASA's Spitzer Space Telescope plays a key role in studying exoplanets. As our understanding evolves, so must the artwork. Astronomers found a blazing hot spot on the exoplanet Upsilon Andromedae b that at first, appeared to face towards its star. More data has revealed that the hottest area is actually strangely rotated almost 90 degrees away, near the day/night terminator. WASP 12b is as hot as the filament in a light bulb, and would be blazing bright to our eyes. Most interestingly, if it proves to have a strongly elliptical orbit, as first thought, calculations show it would be shedding some of its outer atmosphere <b>...</b>